Closing Wed. (11pm):HW_1A, 1B, 1C Step 3:

Read newsletter and postings. Read sections 5.2, 5.3, and 5.4.

Entry Task: Approximate the area under $f(x)=1+x^{2}$ from $x=2$ to $x=3$ using Riemann sums with $n=4$ subdivisions and right endpoints.

Step 1: $\Delta x=\frac{b-a}{n}=$

$$
\begin{aligned}
& \text { Step 2: } x_{0}=a \\
& x_{1}=a+\Delta x= \\
& x_{2}=a+2 \Delta x= \\
& x_{3}=a+3 \Delta x= \\
& x_{4}=a+4 \Delta x= \\
& \text { Pattern: } x_{i}=a+i \Delta x=
\end{aligned}
$$

Rect 1 Area $=f\left(x_{1}\right) \Delta x=$
Rect 2 Area $=f\left(x_{2}\right) \Delta x=$ Rect 3 Area $=f\left(x_{3}\right) \Delta x=$ Rect 4 Area $=f\left(x_{4}\right) \Delta x=$

Answer: Area \approx

Pattern:
$\sum_{i=1}^{4} f\left(x_{i}\right) \Delta x=$

What is the general pattern in terms of n ?

Another Example:

Using sigma notation, write down the general Riemann sum definition of the area from $\mathrm{x}=5$ to $\mathrm{x}=7$ under

$$
f(x)=3 x+\sqrt{x}
$$

$\Delta x=\frac{b-a}{n}=$
$x_{i}=a+i \Delta x=$
$\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=$

Velocity/Distance \& Reimann Sums

When velocity is a constant:
Distance $=$ Velocity \times Time
If velocity is not constant, we can
break the problem and approximate by assuming that velocity is constant over each subdivision.

Example:
You are accelerating in a car. You get the following measurements:

$\mathrm{t}(\mathrm{sec})$	0	0.5	1.0	1.5	2.0
$\mathrm{v}(\mathrm{t})(\mathrm{ft} / \mathrm{s})$	0	6.2	10.8	14.9	18.1

Estimate the distance traveled by the car traveled from 0 to 2 seconds.

5.2 The Definite Integral

Def'n:
We define the definite integral of
$\mathrm{f}(\mathrm{x})$ from $\mathrm{x}=\mathrm{a}$ to $\mathrm{x}=\mathrm{b}$ by

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

where $\Delta x=\frac{b-a}{n}$ and $x_{i}=a+i \Delta x$.

Some Basic Definite Integral Rules:

1. $\int_{a}^{b} c d x=(b-a) c$

Examples:

1. $\int_{4}^{10} 5 d x=$
2. $\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x$
3. $\begin{gathered}\int_{a}^{b} c f(x) d x=c \int_{a}^{b} \\ \text { and } \\ \int_{a}^{b} f(x)+g(x) d x\end{gathered}$
$=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
4. $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$
5. $\int_{3}^{1} x^{3} d x=-\int_{1}^{3} x^{3} d x$

Note on quick bounds (HW_1C: 9,10)

$$
m(b-a) \leq \int_{a}^{b} \mathrm{f}(\mathrm{x}) d x \leq M(b-a)
$$

Example: Consider the area under

$$
f(x)=\sin (x)+2
$$

on the interval $x=0$ to $x=2 \pi$.
(a) What is the max of $f(x)$? (label M)
(b) What is the min of $f(x)$? (label m)
(c) Draw one rectangle that contains all the shaded area? What can you conclude?
(d) Draw one rectangle that is completely inside the shaded area? Conclusion?

